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ABSTRACT

Two extensions of a classical theorem of Rellich are proved: (1) Let P =
P (—idlox) be a partial differential operator with constant coefficients in R",
let the manifolds contained in {f eR";, P =0} have codimension = k& > 0,
and denote by I" an open cone in R” intersecting each normal plane of every

such manifold. If ue ¥’ N le .»Pu=0and

]

li}n_R”"f |u(x)[’dx =0, Tx={¢el, R<|&|<2R}
Cr

Roo

it follows that u = 0. (2) Assume in addition that each irreducibe Ifactor of P
van'shes on a real hypersurface and that I contains both normal directions at
some such point. If u € ' N Lf and P(D) « has compact support, the
same condition with k =1 implieg>c that ¥ has compact support. In both
results the hypotheses on the cone I and on the operator P are minimal.

1. Introduction

According to a classical theorem of Rellich [8] a solution of the reduced
wave equation Au + u = 0 outside a ball in R" must vanish identically if
u(x)]x ]("_”/ 2 50 as x — 0. Extensions of this result have been given for large
classes of operators (see [1, 5, 6, 9] and further references in these papers).
Our aim here is to complete the study of the constant coefficient case in Litt-
man [5, 6].

If ue ¥ (R") and P(D)u = 0 where P is a polynomial in D = —id/dx, then
the support of the Fourier transform 7 is contained in the set A of real zeros

Received June 1, 1973
103



104 L. HORMANDER Israel J. Math.,

of P. Since A is the union of analytic manifolds we begin the study of the asymp-
totic behavior of u in Section 2 by exzmining the Fourier transform of a distri-
bution v supported by a smooth manifold in R”, When v is tangentially smooth
it is known that the wave front set is contained in the normal bundle of the
manifold at the support of v (see [3, Sect. 2.5]). It is therefore natural that the
normal directions play a crucial role in the statements proved in Section 2. Dis-
regarding such precise informition here we may sum up the results obtained as
follows: If A is non-empty and of codimension k, then the equation P(D)u = 0
has solutions u € C* such that

1.1) 0< f |u(x)[?dx < CRY, R>0.
|x] <R

On the other hand, if ue " N I3, satisfies the equation P(D)u = 0
and

(1.2) lim R™* f |u(x) [2dx = 0,
R- R/2<|x|<R
then u = 0.

Section 3 is devoted to the equation P(D)u = f where f is a distribution of
compact support. First we give quite precise conditions on the decrease of u which
guarantee that the equation has another solution of compact support. Sub-
traction of this solution and application of the results proved in Section 2 gives
extensions of Rellich’s theorem where the hypotheses are proved to be essentially
minimal. In particular it follows that u € I?, P(D)u € &' implies u € & if and only
if every irreducible factor of P vanishes on a real hypersurface. This property
was established by Agmon [1] for some classes of operators with variable co-
efficients.

2, Fourier transforms of distributions supported by manifolds and analytic sets
Our first result is elementary and essentially well known (see [5]):

THEOREM 2.1. If u is a smooth density with compact support on a C% sub-
manifold M of R” of codimension k, then

2.1) f | a(&)|*d¢ < CRY, R>0.
|§|<R

If T is a closed cone in R" which contains no element # 0 which is normal to
M at a point in suppu, the
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(2.2) |a8)] £ CyL +] &P, geT,
for every integer N.

ProOOF. By a partition of unity the proof is reduced to the case where M is of
the form

x" = ¢(x,)s X = (xl"")xn—k)ew < Rn_k, x" = (xn-k-f'l)"',xn)'

Here w is open and ¢ e C*(w). We can write u = a(x")dx’ where ae C3(w)
and obtain

a(e) = f exp( — i((x', &' + (x), & 5a(x ).

If x" e suppa is a critical point of the function in the exponent, then
EY+HLPENED> =0,  teR7TH

which means that & = (&, £") is a normal of M at (x’, $(x’)). Hence there is no
critical point when O # £eI" which gives (2.2) by repeated partial integrations,
By Parseval’s formula

f f | a(&)[? de’ dgr=(my~* f Ja(x') [Pdx’ f de” = CR*
sl <k &) <R

which implies (2.1).
In spite of the simple proof the estimate (2.1) is optimal:
THEOREM 2.2, Let ue &', iie L}, and assume that there is a point X, € supp u

such that suppu in a neighborhood of x, is contained in a C* manifold M of
codimension k. If 0 € R" is a normal of M at x, and if ¢ > 0, then

(2.3) lim R7* f |4(&) Pde > 0.
|E/IR—08]<e

R

We shall prepare for the proof by a lemma which also shows that the hypo-
thesis 7 e L%, made in the theorem is not restrictive.

LeMMA 2.3. Let ue % (R, ideLi,, 0eR" and ¢>0. If yeCJ(R") and
v = yu it follows that for every ke R

(2.4) lim R-kf |6(6)[*a¢ < C lim R f a9 |z,
|E/R—0]<e R3w [$/R—0]<2e

R -+ -+

where C = (2m)™" [|2]|dE.

PROOF. Choose Y€ C3’ (R") so that (&) = 1 when |¢| <&/2 and (&) =0
when [él > ¢, and set Yx(&) = Y(¢/R). Then
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Q)™ " * i = (2r) " (YD) * 4 + (1 — Yp)D) * ),
2
Al2 "
J.I-‘,‘/R—9|<e IO/IRQ) apdi s (ﬂz]dé) f[:/R—0|<2el “

For arbitrary multi-indices « and § we have for any N when [ ¢/R — 9[ <e

(2.5) sup [n*DE(1 — Yg(& — MILE — M| £ CyR7™.

b

2de.

In fact, the function to estimate vanishes unless |& —#| >¢eR/2, and since
|n] < ||+ |é—n| S R([0| +&) +[E~n| we obtain (2.5) in view of the
rapid decrease of . Since #e &’ we conclude that

|-y *a(©) | SCR™If [{/R-0] <4,
which proves the lemma.

ProOF OF THEOREM 2.2. In view of Lemma 2.3 it is no restriction to assume
that suppu is a compact subset of M. We may also assume that x, = 0 and, as
in the proof of Theorem 2.1, that M is defined by x"= ¢{x") where x' e = R* ¥,
¢ € C*(w) and ¢(0) = ¢'(0) = 0. The normal 6 is then of the form (0, 8).

Choose a conic neighborhood V of {(0,£"); " € R*\0} so that

(2.6) |&6—0|<eif &€ = (&, &)eV and |& —0"| <ef2.
When y e C3(w) it follows from Theorem 2.1 that
L = [ 1) exp (< £ + N
is rapidly decreasing outside V if suppy is sufficiently close to 0. Choose
¥ € Cg (RY) so that | & — 8”| < &/2 for &” e supp, and set
Fr(¥) = 2 WRE" — $(x))).
By Fourier’s inversion formula
fr(® = @n'R™Y(~ IR = ).
Hence
u(fp) = 2n)™" f A&)fr(— Ot = (271)"'"R""f Y& [R)L(E)a(E)dE.

It follows from (2.6) that Ié/R - 9| < & in the intersection of ¥ and the support
of the integrand. Thus we obtain using (2.1) and Cauchy-Schwarz’ inequality

lu(fR)] = C(R™* f () |*deyt/? + CR™* fc | L(&)a(E) | de.

[¢/R-0] <&
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The last integral is convergent by Theorem 2.1 so it (2.3) is not valid we conclude
that

2.7) fim_u(f)| = 0.

Ro
Let v be the composition of u and the map x — (x’,x" + ¢(x")) (defined ar-
bitrarily for x’ ¢ w). Then the support of v is in the plane x” = 0 and we can write

v as a finite sum

v= 2 v,QD%

where v,e &' (R"™¥), § is the Dirac measure at 0 in R and a = (o, _p4q, ", &,).
We can then write (2.7) in the form

(2.8) lim |2 0,()R"( = D)YY(0)| = 0.

R ®
Since ¥ can be chosen so that the occurring derivatives of ¥ have prescribed
values, we conclude that v,(y) = 0 for all ye Cg(w) with support close to 0.
Hence 0 ¢ suppv; so 0 ¢suppu and the theorem is proved.

REMARK. The proof shows that the limit in (2.3) is + o unless ¥ has an I?
density.

Before stxting the next theorem we recall that a subset 4 of R” is called real
analytic if it can be defined locally by analytic equations. The codimension is the
minim2l codimension of analytic manifolds M with M < 4.

THEOREM 2.4. Let ue &'(R") be supported by a real analytic set A of co-
dimension k > 0, and assume that i L2 _. Set

I'p ={¢eT;R<|¢| < 2R}
where T is an open cone in R" which for every analytic manifold M = A and
Xo € M contains some normal of M at x,. If

lim R"‘f | 4(&) |2de =0

R Tr

it follows that u = 0.

Proor. Let x,€ A and assume that A, < A is an analytic set in a neighborhood
Q of x, such that Q N suppu < A4,. Let d be the codimension of 4,. Since d = k
it follows from Theorem 2.2 that no regular point of 4, of dimension n — d is
in supp u. But the other points are contained in an analytic set 4, of codimension
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> d (see [7, Chap. III, Th. 1 and Prop. 7]). By repeating the argument we conclude
that x, ¢ supp u.

REMARK. We could use different cones for different x, in Theorem 2.4 as
well as in the results below.

The analyticity assumption is no restriction in the application to differential
equations:

COROLLARY 2.5. Let uey'anloc satisfy a differential equation P(D)u=0
with constant coefficients. Assume that A = {{£€R", P(&) = 0} is not empty
and of codimension k, and let T, T'y be as in Theorem 2.4. If

lim R"‘f |u(x)|*dx =0
m e

R
it follows that u = 0.
The following theorem shows that Corollary 2.5 is very precise.

THEOREM 2.6. Assume that I' is an open cone in R* and N an integer such
that every ue &' N C* with P(D)u = 0 and

(2.9) lim R™" f |u(x)|?dx =0
T'r

Rox
is equal to 0. If M = R" is a C® manifold where P vanishes and if xo€ M, it

follows that the closure of T contains some normal # 0 of M at x, and that
N £ codim M.

ProOF. Let 4 be a Cg density on M. Then Pu = 0 and (2.9) follows from
(2.1) if codimM < N which is therefore impossible. If T contains no normal
# 0 of M at x4 and if supp u is sufficiently close to x, the condition (2.9) follows
from (2.2) for any N which completes the proof.

3. Compact perturbations

We shall now pass to the study of solutions of the inhomogeneous equation
P(D)u = f when feé&’. Since the study of u at infinity can be reduced to Cor-
ollary 2.5 if there is another solution of compact support we shall first examine
when such a solution exists.

TueoreM 3.1. Let ue ¥ NI%, and assume that P(D)u = fe&'. Assume

loc

further that P = ¢ P7'--- P{* where c is a constant and for every j

(3.1 P; is real and irreducible



Vol. 16, 1973 LOWER BOUNDS AT INFINITY 109
(3.2) Pi(&) =0 and N’ = grad Pj(&) # O for some & eR"

Let T be an open cone containing N/ and — N’ for every j, and set Ty = {x€T,
R<|x|<2R}LIf

(3.3) lim R™* fr |u(x)|2dx = 0,

i3
it follows that P(D)v = f for some ve &' NI

ProoF. It suffices to show that f/P is an entire function (see [2, Th. 3.4.2 and
3.2.2]). Since we can assume that the irreducible factors P; are different this
follows if we show that f vanishes of order m ; at the real zeros of P; near &'
With suitable coordinates these are of the form

&i=s(¢) ¢ ewcR,

where se C®(w) is real valued, & = (£g,5(&9)) and N’ is proportional to
(s'(6o), — 1)

Our argument is similar to the proof of Theorem 2.2. Choosing y € C3 (w) with
support close to &, and ¥ € CT(R) such that = 1 in a neighborhood of 0, we
set with0 = v < m;

gr(&) = 1R YORGE) = &)

If F, = 0"f|0¢} we obtain by dominated convergence

f (9n)

f f HEWRPORGE) — ENE, E)AE L,

=[] wewer @) - iRz - 2n [ e senae,
for | Y(t)dr = 2n. The proof will therefore be complete if we show that
li_rn_R_.a0 ] f(gR)| = 0 when supp y is sufficiently close to &,"

Since f = Pi we have f(gg) = #i(hy) where by Taylor’s formula

hg(8) = P(O)gr(8) = R*TOR((E) =~ &) T (&, — s(E)a,&).
my
Here a,e Cy'(w) and suppa, < suppy. The Fourier transform of #J™( — 1) is
@2r)(i0/t)( — it)"¥(7) = ¥, (1) e C5(R). Since pu = m; >v we have suppy,,
< supp Y’ which does not contain the origin. With

L(x) = f exp( ~ i((x', &' + %,(E a(E)de

we obtain as in the proof of Theorem 2.2.
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(3.4 he(x) = Z Ry, (x/ RI(x).

mj
Define ve ¥ N C by 6 = pil where pe Cg’ is equal to 1 in a neighborhood
of &/, It follows from Lemma 2.3 that (3.3) remains valid if 4 is replaced by by 0
and I is replaced by another conic neighborhood of + N7, If supp y is sufficiently
close to &; we have b hg) — @(hg) — 0 as R — co. Since v(x) =O( ] x IN) for some N
and since v—pu £ —1 in (3.4), the proof of (2.7) gives limg.., l v(ﬁR)l = 0.
Hence lim l ﬁ(hR)I = 0 which completes the proof. o

CoROLLARY 3.2. Let P satisfy the hypotheses of Theorem 3.1 and assume that
the open cone I" has the properties required in Theorem 3.1 as well as in Cor-
ollary 2.5. If P(Du=feé’, ue &’ N L2 and (3.3) is valid, it follows that
ued’.

ProorF. By Theorem 3.1 we have P(D)u = P(D)v for some veé N I?, and
from Corollary 2.5 it follows that u — v = 0.

Note that suppf and suppu have the same convex hulls by the theorem of
supports (see [2, Lemma 3.4.3]).

The following consequence was pointed out by I. Segal.

COROLLARY 3.3. If P satisfies the hypotheses of Theorem 3.1 and ue I}(R"),
P(D)uc &', it follows that u has compact support if ¢ < 2n/(n — 1).

Proor. If yeCy and v = u *y we have vel” for r = g and P(Dyved’.
If r > 2 then

2/r 1-2/r
J |o(x)]?dx = (f |v(x) l'dx) (f dx) = o{R)
R<|x|<2R R<|x|<2R R<|v[<2R

if n(1 —2/r) £ 1, that is, r < 2n/(n — 1). Hence v has compact support by
Corollary 3.2, and supp v is contained in the convex hull of the support of
¥ * P(D)u. When x tends to d the corollary follows.

Note that the statement is false for ¢ > 2nf/(n — 1)if P = A+ 1.

Corollary 3.2 is our extension of Rellich’s theorem. The rest of the paper is
devoted to a proof that the hypotheses m2de cannot be much relaxed.

THEOREM 3.4, Assume that P has an irreducible factor p which is not pro-
portional to a real polynomial or has no simple real zero. For any integer N
one can then find ueL® NC* so that P(Dyu = fe& and u(x) = o(lxl“")
butug¢é’.
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For the proof we need a lemma.

LEMMA 3.5. Let p be an irreducible polynomial. If p is not proportional
to a real polynomial or if p has no simple real zero there is a polynomial q
relatively prime to p such that for some positive constants C, M, M,

(3.5) la@®" < Clp@)|(+ )™ ter

ProoF. First note that one can find g relatively prime to p so that ¢ = 0 at
every real zero of p. In fact, if p is not proportional to a real polynomial we can
choose ¢ = p and if p has no simple real zeros we can take g=0p/d; with j
chosen so that dp/d¢; is not identically 0.

To prove that (3.5) is valid for such polynomials g we first assume that ] é] <L
If p has no zero with |f| < 1 there is nothing to prove so assuming that such
zeros exist we set for t >0

f&) = sup{|a®]; [¢| £ 1, | O] < 1}.
This incre:sing function of ¢ is piecewise algebraic by the Tarski-Seidenberg
theorem (see [2, Appendix]). Since ¢ is chosen so that f(f) »0 when t -0 the
Puiseux series expansion of f shows that f(#) < Ct” for some C and y > 0. Hence
lq(é)l < Clp(é)ly when |f| <1 which proves (3.5) then. If we introduce
n=¢/|¢|* as a new variable and remove denominators wecanmake the same

conclusion when lé [ > 1.

ProoF oF THEOREM 3.4. With g chosen according to Lemma 3.5 and a large
integer M we set

(&) = q(&)™p(&) ~'8(9).
Here geCy and g(¢) # 0 for some complex ¢ with p(£) = 0 and ¢g(¢) # 0.
Then 4 is not entire so u does not have comp:ct support. If M — N > M (1 + N)
it follows from (3.5) that # € C¥ and that the derivatives of order < N are rapidly
decreasing. Hence D*u(x) = o{ I x] ~¥) for every «. Now
P& = q@™(P&/pE)EE) = REEE®)

where R is a polynomi L It follows thit P(D)u = R(D)ge Cg which proves the
theorem.

REMARK. Tréves [9] has proved that
P(Dyu = fe&', u(x) = o{ | x| MY N=ueé’
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if and only if every irreducible factor of P has some real zero. By Theorem 3.3
this is not true for any fixed N unless every factor has real zeros of codimension
one, and in that case Corollary 3.2 shows that it suffices to take N = (n—1)/2
as in the original Rellich theorem. Thus there is a fundamental difference between
the case of real zeros of codimension one and real zeros of higher codimension
in the problems considered in this section but not in those discussed in Section 2.

We shall finally examine the necessity of the condition on I in Corollary 3.2.
By Theorem 2.6 we know already that I must contain either grad P;or — grad P;
for every zero of P; so we include this in the hypotheses.

THEOREM 3.6. Let p be an irreducible real polynomial and T a closed
semi-algebraic cone in R" such that grad p({) or — grad p{&) is in T for every
real zero of p. Assume that there is no real ¢ with p(£) = 0 and grad p(¢) # 0
such that grad p(¢) and — grad p(¢) are both in I'. Then one can for every integer
N findue ¥ NC® such that p(Dyu = feé and u(x) = o(lxl'") in T but
ug¢ds’,

The statement is of course contained in Theorem 3.4 if p has no simple real
zeros so we assume that such zeros exist. If p is a factor of P we can replace
p by P in the conclusion by simply applying the differential operator P(D)/p(D).

The first step in the proof is to make the hypotheses quantitative by means of
the Tarski-Seidenberg theorem.

LEMMA 3.7. When the hypotheses of Theorem 3.6 are fulfilled there are
constants C, M,, M, such that when (eR® and p(£) =0

(3.6)  d(T,grad p(¢)) + d(T, ~ grad p(¢)) = c|grad p(O)|™* (1 + [& )™
where d(I', ) denotes the distance from 0 to I

Proor. For fixed R > 0 we denote by fi(f) the infimum of the left-hand side
in (3.6) when |¢| <R, p(&) =0, |grad p(¢)| > t. This is a positive increasing
piecewise algebraic function of ¢ > 0, by the hypothesis and the Tarski-Seidenberg
theorem. Hence

fe() > c(R)®

where ¢(R) > 0 and y(R) is a positive rational number which comes from the
Puiseux series expansion of an algebraic function of degree independent of R.
Hence y(R) < M for some M. Another application of the Tarski-Seidenberg
theorem to the infimum of

(d(T, grad p(&)) + d(T, — grad p(¢))) | grad p(&)| ™™
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when |&| < R and p(¢) = 0 will now prove (3.6).

Proor OF THEOREM 3.6. We choose the coordinites so that p is non-
characteristic with respect to £,. For the complex zeros of p we have then

(3.7 & = ca+[¢ ]

If R(¢") is the discriminant of p as a polynomial in &, and p, = 0p/d¢&,, it follows
that

(3.8) [RE)| = Clp&)|(1+[& ™ when p(¢) = 0.

The zeros &, = t(€") of p are analytic in the set where R({") # 0 and they satisfy
estim_tes of the form

(3.9) [D*(&)| < C|RE)[M (1 + | & M.

For proofs of these clissical elementary facts see, e.g., [4, LemmasA.3and A.4].
We shall define u by the integral

(3.10) u(x) = fGXP(i<x,€>)R(€’)"é(é)/p(é)dé

where g e Cy (R"), £is not zero at every simple real zero of p and o is a large
positive integer. The precise definition of the integrand as a distribution at the
zeros of p will be given below.

We shall consider separately the contributions to (3.10) for ¢ in different
components Q of {&" e R"™!; R(¢") # 0}. In view of the implicit function theorem
the number of real zeros t of p(£’,7) is constant when &' e Q. We denote them
by 7,(&) < - < 1,(&). (Possibly there may be no zero in which case much that
follows is trivi.l.) For £ € Q we have by the Lagrange interpolation formula

@1 EOREY /P = 213 a, o) — (&) + ba(&)

where a, (") = (&', 1,(ENREY [p(E,1(E)). Tt is clear that a,oe C®(Q)
and that bge C®(Q x R).
We choose a C* function ¢ on R so that Y(f) = 0 for t >0 and ¥(f) = — 1
for t < — 1. Then we have
if(t) —(t+i0)"teC®

where (t+i0)~! = lim,_ ,o(t + ie)”" in 2'. Furthermore, § is rapidly de-
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creasing at infinity. To improve the behavior as £, - o0 we modify the decomposi-
tion (3.11) to

G.11)" ORE)/p() = % a,0(E)(E DPCE (& = 7,(EN) + bA(Q).

At the same time (3.11)" defines the left-hand side as a distribution of &, for fixed
&’ as soon as we choose the signs. Comparison with (3.11) gives if we consider
separately the cases when &, is much larger than or comparable to If | that for
any M, p,a

(3.12) [D%a,o|(1 +|&' DM+ |D%ba| (1 + [EP¥ < C|RE)

provided that o is larger than some number depending only on «, p. When p >0

this means in particular that the left-hand side vanishes on the boundary of Q.
By hypothesis

(3.13) T (—(&), 1) = £ grad p(§)/ps(S) el
for exactly one choice of the sign. Since I is closed and Q is connected it follows

that the sign for which (3.13) is valid depends only on v and not on &’. We choose
this sign in (3.11)" and in the following final form of (3.10)

G14) ux) = = f dz f ( s av.g(c'xii)n/7(_+.(:n—rv<¢'»)+ba<¢))
Q Q 1
exp(iCx, ENE,
= I T (£200H(£x)al)+ 3 f ba(€) exp (i<x, EY)dE.

Here

%) = fn (XS &' + %t E Ny aEE .

We may differentiate under the integral sign in (3.14) and this gives

p(D)u(x) = f exp(i{x, £))(OR()d¢ = 2n)'R(D')g € Cg’.

Since #=(2n)"$ R°/p when p # 0 and this is not an entire function we conclude
that u does not have compact support.

If ¢ is large enough the functions bg in the different components  combine
to a function b’ € C¥(R") which is rapidly decreasing as well as its derivatives of
order < N. Hence the corresponding contribution to u is in C* and all its de-
rivatives are O(|x|™") as x - co.
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It remains to estimate the terms in the first sum in (3.14). Assume that (3.13) is
valid with the plus sign. Since ¥(x,) =0 when x, = 0 the corresponding
term is O unless x, < 0. If

I' ={xel; x, <0}
we have for some constants C, N, N”
(.15 |x] £ C|x + x5/ )| |RE)| VU +|E PV, xel7,E Q.
In view of the homogeneity it suffices to prove this when x, = — 1. Then we can
apply (3.6) with ¢ = (&', 7,(£')) noting that ( — 7,(¢'),1) eI and that
grad p(&) = p,(O)( — 7,(&), D).
It follows that
B @ T+ [T £ |x = @€ = D =[x = ()|
which gives (3.15) with | x,| instead of | x| in the left-hand side. Since
x| =[x + %1 | + [ x,1(8)]

we conclude in view of (3.9) that (3.15) is valid.
We shall now integrate by parts in I,,g using the fact that

Lexp(i(<x', &> + x,7(8))) = exp(iKx', "> + x,7/(&)

if L= —i|x +x;7,|72 217" (x; + x,07,/0£))0/0x;. If ¢ is large enough it
follows that

I,.a(0) = L exp (i, €3 + %t &) (1LY +1a, o(€)dE

where ‘L is the adjoint of L. For sufficiently large ¢ the estimates (3.9), (3.12)
and (3.15) give

[1a)] 5 €l [+ [¢ymag, xer,
Q
where C is independent of Q and v. Hence

u(x) =0(|x|™, x>0 in T,

which completes the proof of Theorem 3.6.
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