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ABSTRACT 

Two extensions of a classical theorem of Rellich are proved: (l) Let P = 
P (--ig/gx) be a partial differential operator with constant coefficients in R n, 
let the manifolds contained in ( ~ R n ;  P (r =0) have codimension _>_ k > 0, 
and denote by F an open cone in R n intersecting each normal plane of every 
such manifold. If u ~ ~5 a'  ('3 L:' Pu = 0 and 

loe  ' 

lim R -k  fr [ u ( x ) ] 2 d x = O '  F R = { ~ F ' R < I ~ ] < 2 R }  

it fol'.ows that u = 0. (2) Assume in addition that each irreducibe lfactor of P 
van'shes on a real hypersurface and that F contains both normal directions at 
some such point. If u E i f "  ~ L 2 and P(D) u has compact support, the 

loe  
same condition with k = 1 implies that u has compact support. In both 
results the hypotheses on the cone F and on the operator P are minimal. 

1. Introduction 

According to a classical theorem of Rellich [81 a solut ion of the reduced 

wave equat ion  Au + u = 0 outside a ball  in E n must  vanish identically if 

u(x)  ] x ] (n- 1)/2 ~ 0 as x ~ Go. Extensions of this result have been given for large 

classes of operators (see [1, 5, 6, 9] and further references in these papers). 

Our  aim here is to complete the s tudy of  the cons tan t  coefficient case in Lit t-  

man  [5, 6"1. 

I f  u ~ 6a ' (R ") and P(D)u  = 0 where P is a po lynomia l  in D = - id/dx, then 

the suppor t  of  the Four ier  t ransform a is conta ined in the set A of real zeros 
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of P. Since A is the union of analytic manifolds we begin the study of the asymp- 

totic behavior of u in Section 2 by examining the Fourier transform of a distri- 

bution v supported by a smooth manifold in ~". When v is tangentially smooth 

it is known that the wave front set is contained in the normal bundle of the 

manifold at the support of v (see [3, Sect. 2.5]). It is therefore natural that the 

normal directions play a crucial role in the statements proved in Section 2. Dis- 

regarding such precise information here we may sum up the results obtained as 

follows: If A is non-empty and of codimension k, then the equation P(D)u = 0 

has solutions u ~ C oo such that 

(1.1) 0 < f [//(x) [2dx <<- CR k, R > O. 
,11 x l < R  

On the other hand, if u e 5 a' N L]o c satisfies the equation P(D)u = 0 
and 

(1.2) lim R-k  fg [u(x)IZdx = O, 
R"OO /2 < [x[ <R 

then u = 0. 

Section 3 is devoted to the equation P(D)u = f where f is a distribution of 

compact support. First we give quite precise conditions on the decrease of u which 

guarantee that the equation has another solution of compact support. Sub- 

traction of this solution and application of the results proved in Section 2 gives 

extensions of Rellich's theorem where the hypotheses are proved to be essentially 

minimal. In particular it follows that u ~ L 2, P(D)u ~ ~' implies u e g '  if and only 

if every irreducible factor of P vanishes on a real hypersurface. This property 

was established by Agmon [1] for some classes of operators with variable co- 

efficients. 

2. Fourier transforms of distributions supported by manifolds and analytic sets 

Our first result is elementary and essentially well known (see [5]): 

THEOREM 2.1. I f  U is a smooth density with compact support on a C | sub- 

manifold M of  R" of codimension k, then 

(2.1) I a(r162 =< CR k, R > O. 
JI ~I<R 

I f  F is a closed cone in ~" which contains no element ~ 0 which is normal to 

M at a point in supp u, the 
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(2.2) ]~({)[ < CN(1 +]{ [ ) -N ,  r  

f o r  every integer N. 

PROOF. By a partition of unity the proof is reduced to the case where M is of 

the form 

x" = r x '  = (xl, . . . ,x~_0 e e o c  R ~-~, x" = (x~-k+l,--.,x~). 

Here a~ is open and ~ e C~(a~). We can write u = a(x ' )dx '  where a e Cg(a~) 

and obtain 

f e x p ( -  i((x',  { ' )  + (~b(x'), {" ) ) )a (x ' )dx ' .  ~({) 

If  x' e supp a is a critical point of the function in the exponent, then 

( t , { ' )  + (~ ' (x ' ) t ,{" )  = 0, t~  R n-k, 

which means that { = ({', {") is a normal of M at (x', q~(x')). Hence there is no 

critical point when 0 ~ ~ e F which gives (2.2) by repeated partial integrations, 

By Parseval's formula 

ff,,,,,<Rl ('>led"dC=(2=)n- fta(x"12dx" f,,,,,< dC = CR 

which implies (2.1). 

In spite of the simple proof the estimate (2.1) is optimal: 

THEOREM 2.2. Let  u e 6P', ~ e L2or and assume that there is a point x o e supp u 

such that supp u in a neighborhood o f  x o is contained in a C OO mani fo ld  M o f  

codimension k. I f  O e R" is a normal  o f  M at xo and i f  g > O, then 

(2.3) lim R -k ~ [R({) ]2d{ > 0. 
R~+oo ,l ] ~/R -Ol  < e 

We shall prepare for the proof  by a lemma which also shows that the hypo- 

thesis z~ e L~o~ made in the theorem is not restrictive. 

LEbtMA 2.3. Let  u e A"'(Rn), ~ ~ L~o~, 0 ~ ~" and e > O. I f  Z ~ C~(~")  and 

v = )~u it fol lows that f o r  every k e  

(2.4) lim R-kf ]o(~)[2d{ < C lim R - k l  I (e) 

where C = S I 

PROOF. Choose ~ e C ~  (R") so that ~b({)= 1 when I l l  < e / 2  and ~ ( 0 = 0  

when [{] > g, and set ~R({) = ~({ /R) .  Then 
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= (27r)-";~ �9 a = (2rr)-"((~R~) * a + ((1 - OR)~) * a), 

f (r ;f { / R - O  I < ~ ,, 

For arbitrary multi-indices ~ and fl we have for any N when [ ~ / R - 0 [ < e 

(2.5) sup [q'D~(1 - 0 , (~  - q))~(~ - q)[ =< CNR -N. 

In fact, the function to estimate vanishes unless [~ - ~/[ > eR ] 2, and since 

[q[ =< ] ~ [ + [ ~ - ~ / ]  = < R ( [ 0 [ + e ) + [ ~ - q [  we obtain (2 .5 ) i n  view of the 

rapid decrease of ~. Since ~ e 5: '  we conclude that 

[((1--OR)2)* ~(~)[ <=CNR-Nif [~[R-O[ < ~, 

which proves the lemma. 

PROOF OF THEOREM 2.2. In view of Lemma 2.3 it is no restriction to assume 

that supp u is a compact subset of M. We may also assume that Xo = 0 and, as 

in the proof of Theorem 2.1, that M is defined by x"= ~b(x') where x' e co c R" -k, 

r e C~ and q~(0) = q$'(0) = 0. The normal 0 is then of the form (0, 0"). 

Choose a conic neighborhood V of {(0, ~"); ~" e Nk\0} so that 

(2.6) ] ~ - 0] < ~ if ~ = (~', ~") e V and [ ~" - 0"[ < ~/2. 

When Z e C~~ it follows from Theorem 2.1 that 

f Z(x') exp (i((x', ~') + (r ~"))dx' Iz(~) 

is rapidly decreasing outside V if suppz is sufficiently close to 0. Choose 

e C~ ~ (R ~) so that ] ~" - 0"[ < r for ~" e supp ~s, and set 

fR(X) = Z(X')~(R(x" -- r 

By Fourier's inversion formula 

]~(~) = (2r0~R-*~b( - ~"/n)Ix( - ~). 

Hence 

U(fg) = (2~)-" f ~(~)fg(-  ~)d~ = (21r)k-nR-kf ~(r 

It follows from (2.6) that ]~/R - 01 < e in the intersection of V and the support 

of  the integrand. Thus we obtain using (2.1) and Cauchy-Schwarz' inequality 

I,,(s:) 1---- f ,,,,-o, <, I + I I de" 
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The last integral is convergeat by Theorem 2.1 so if (2.3) is nat valid w~ conclude 

that 

lim l u(f )l --- o, (2.7) 
r ~ 

R--* QO 

Let v be the composition of u and the map x ~ (x ' ,x" + ~b(x')) (defined ar- 

bitrarily for x'  r co). Then the support of  v is in the plane x ~ = 0 and we can write 

v as a finite sum 

where v~e# ' (R"-k) ,  ~ is the Dirac measure at 0 in •k and ~ = (~n_k+l,'..,~n). 

We can then write (2.7) in the form 

(2.8) lim 1~ v,(7~)Rl'l( - D)'~(0)} = 0. 

Since ~, can be chosen so that the occurring derivatives of ~ have prescribed 

values, we conclude that v,(x) = 0 for all X ~ C~~ with support close to 0. 

Hence 0 r supp v i so 0 r supp u and the theorem is proved. 

REMARK. The proof  shows that the limit in (2.3) is + ~ unless u has an L 2 

density. 

Before stating the next theorem we recall that a subset A of  R" is called real 

analytic if it can be defined locally by analytic equations. The codimension is the 

minim~.l codimension of analytic manifolds M with M c A. 

THEOREM 2.4. Let u eSe ' (~")  be supported by a real analytic set A o f  co- 

dimension k > O, and assume that ~ ~ L~oc . Set 

FR = { ~ F ;  R < 1~[ < 2R} 

where F is an open cone in R n which for  every analytic manifold M ~ A and 

xo ~ M contains some normal o f  M at Xo. I f  

li_mm R -k f r  [ = 0 
R--~ oo R 

it follows that u = O. 

PROOF. Let Xo ~ A and assume that A~ c A is an analytic set in a neighborhood 

f~ Of Xo such that f2 n suppu ~ A 1. Let d be the codimension of  A~. Since d > k 

it follows from Theorem 2.2 that no regular point of A~ of dimension n - d is 

in supp u. But the other points are contained in an analytic set A2 of  codimension 
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> d (see [7, Chap. III, Th. 1 and Prop. 7]). By repeating the argument we conclude 

that Xo r supp u. 

REMARK. We could use different cones for different Xo in Theorem 2.4 as 

well as in the results below. 

The analyticity assumption is no restriction in the application to differential 

equations: 

COROLLARY 2.5. Let u ~ . ~ ' N L ~ o  c satisfy a differential equation P(D)u=O 

with constant coefficients. Assume that A = {~e R", P(~) = O} is not empty  

and o f  codimension k, and let F, F~ be as in Theorem 2.4. I f  

lim R -k I_ lu(x)] 2dx = o 
R-~OO J I'R 

it follows that u = O. 

The following theorem shows that Corollary 2.5 is very precise. 

THEOREM 2.6. Assume that F is an open cone in R" and N an integer such 

that every u ~ 5P' N C Oo with P(D)u = 0 and 

(2.9) lim R lu(x)12dx = 0 
R~oo' dFR 

is equal to O. I f  M = R" is a C OO manifold where P vanishes and i f  x o ~ M,  it 

follows that the closure o f  F contains some normal ~ 0 o f  M at x o and that 

N < codim M. 

PRoov. Let a be a C~ density on M. Then Pu = 0 and (2.9) follows from 

(2.1) if codim M < N which is therefore impossible. If I ~ contains no normal 

4 0 of M at Xo and if supp u is sufficiently close to Xo the condition (2.9) follows 

from (2.2) for any N which completes the proof. 

3. Compact perturbations 

We shall now pass to the study of solutions of the inhomogeneous equation 

P(D)u = f when f e o ~'. Since the study of u at infinity can be reduced to Cor- 

ollary 2.5 if there is another solution of compact support we shall first examine 

when such a solution exists. 

THEOREM 3.1. Let u ~ Sa' ~ L~o c and assume that P(D)u = f ~ $ " .  Assume 

fur ther  that P = c P'~. . .  p~k where c is a constant and for  every j 

(3.1) Pj is real and irreducible 
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(3.2) P j(4 j) = 0 and N j = gradPj(~J) # 0 for  some ~J~ ~". 

Let F be an open cone containin9 N j and - N  j for  every j, and set Fg = {x ~ F, 

R < [ x ] < 2 R } . I f  

(3.3) lim R -1 I ] u(x) l 2dx = O, 
)t~..+ 0 0 ~ F  R 

it follows that P(D)v = f for  some v z 8 '  t3 L 2. 

PRoof. It suffices to show that f /P  is an entire function (see [2, Th. 3.4.2 and 

3.2.2]). Since we can assume that the irreducible factors Pj are different this 

follows if we show that f vanishes of order mj at the real zeros of P1 near ~J. 

With suitable coordinates these are of the form 

4, = s(~'), ~ 'zco = R "- I ,  

where s~C~(o))  is real valued, ~J = (4d, s(4~)) and N j is proportional to 

( s ' ( ~ ) , -  1). 

Our argument is similar to the proof of Theorem 2.2. Choosing Z r C~~ with 
t 

support close to Go and $ ~ C~(~) such that $ = 1 in a neighborhood of 0, we 

set w i t h 0 <  v < m j  
g~(~)  = Z ( ~ ' ) R  ' +  ~ ~ ' ~ ( R ( s ( ~ ' )  - ~ . ) ) .  

If  F,  = 0 "f/O~ we obtain by dominated convergence 

ff Z(~')R'+'~(')(R(s(~') * , , = - ~ , , ) ) f ( ~ ,  ~ , , )d~  d~, ,  

= f f  - f X(r162162162 
for f~(z)d'c = 2n. The proof will therefore be complete if we show that 

lim,_~ ~ If(9,)  ] = 0 when supp Z is sufficiently close to Go' 

Since f = Pt~ we have f(gR) = t~(hR) where by Taylor's formula 

ha(l) = P(OgR(~) = R*+a~(*)(R(s(4 ') -4 , , ) )  ~ (~ , , -  s(~'))~'at,(~'). 
raj 

Here a~ ~ C~(~o) and supp a,  = supp Z. The Fourier transform of t~* ) (  - t) is 

(2n)(iO/~)~'( - i~)~r = ~ > have s u p p ~ ,  @~(z)~Co(~). Since # =  m ~ > v  we 

= supp @' which does not contain the origin. With 

= f e x p ( -  i ( (x ' ,  ~'> + I.(x)  xns(~'))a~,(~')d~' 

we obtain as in the proof of Theorem 2.2. 
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(3.4) ~nR(x) = ~. R ' - "  r 
mj 

Define veSe '  n C  | ~ = pa where pECg'  is equal to 1 in a neighborhood 

of  ~J. It follows from Lemma 2.3 that (3.3) remains valid if ~ is replaced by by 

and F is replaced by another conic neighborhood of +_ N J. I f  supp Z is sufficiently 

close to 4; we have ~(h R) - a(hR) ~ 0 as R --* oo. Since v(x) = O( ] x I N) for some N 

and since v - p  < - 1  in (3.4), the proof of (2.7) gives l i m R ~  I v(h.)l = 0. 

Hence li__m I a(h.) ] = 0 which completes the proof. 

COROLLARY 3.2. Let P satisfy the hypotheses of  Theorem 3.1 and assume that 

the open cone F has the properties required in Theorem 3.1 as well as in Cor- 

ollary 2.5. I f  P(D)u = f e  8", u E ~9 ~" c3 Li2~ and (3.3) is valid, it follows that 

UES' .  

l~oov.  By Theorem 3.1 we have P(D)u = P(D)v for some v~8'C~ L 2, and 

from Corollary 2.5 it follows that u - v = 0. 

Note that s u p p f  and suppu have the same convex hulls by the theorem of 

supports (see [2, Lemma 3.4.3]). 

The following consequence was pointed out by I. Segal. 

COROLLARY 3.3. I f  P satisfies the hypotheses of Theorem 3.1 and u ~ U(N"), 

P(D)u ~ 8' ,  it follows that u has compact support if q < 2n/(n - 1). 

PROOF. If  Z e C o  and v = u * x  we have v e L ' f o r  r > q  and P(D)vs8 ' .  

If r > 2 then 

:. 1 IvCx)12dx = Iv(x)l'dx dx = o ,N) 
<lxl<2R <lxl<2R <IvI<2R 

if n(1 - 2/r) < 1, that is, r < 2n/(n - 1). Hence v has compact support by 

Corollary 3.2, and supp v is contained in the convex hull of the support of  

X * P(D)u. When X tends to 6 the corollary follows. 

Note that the statement is false for q > 2n/(n - 1) if P = A + 1. 

Corollary 3.2 is our extension of Rellich's theorem. The rest of  the paper is 

devoted to a proof that the hypotheses mzde cannot be much relaxed. 

THEOREM 3.4. Assume that P has an irreducible factor p which is not pro- 

portional to a real polynomial or has no simple real zero. For any inteoer N 

one can then f ind u e L  ~~ n C  ~ so that P ( D ) u = f ~ g '  and u ( x ) = o (  lxl  -u)  

but u r  
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For the proof we need a lemma. 

LEMMA 3.5. Let p be an irreducible polynomial. I f  p is not proportional 

to a real polynomial or i f  p has no simple real zero there is a polynomial q 

relatively prime to p such that for  some positive constants C, MI,  M 2 

(3.5) ]q(~)lM, < C[p(~)[(1 + [~[)M,, l e l ~ .  

PROOF. First note that one can find q relatively prime to p so that q = 0 at 

every real zero of p. In fact, if p is not proportional to a real polynomial we can 

choose q = p and if p has no simple real zeros we can take q = Op/alj with j 

chosen so that dp/dlj is not identically 0. 

To prove that (3.5) is valid for such polynomials q we first assume that Ill 1. 

if  p has no zero with I l l  -<- 1 there is nothing to prove so assuming that such 

zeros exist we set for t > 0 

f(t) = sup{lq(r l, Ill---< 1, Ipzl)l z t), 
This incre:.sing function of t is piecewise algebraic by the Tarski-Seidenberg 

theorem (see [2, Appendix]). Since q is chosen so that f ( t )  ~ 0 when t ~ 0 the 

Puiseux series expansion of f shows that f ( t )  < Ct r for some C and ~ > 0. Hence 

Iq( l ) [  < clp(l)l when Ill __<1 which proves (3.5) then. If we introduce 

)7 = l / [  ~ [2 as a new variable and remove denominators we can make the same 

conclusion when I~[ > 1. 

PROOF OF THEOREM 3.4. With q chosen according to Lemma 3.5 and a large 

integer M we set 

u(l) = q(l) Mp(~)- 1~(i)" 

Here g e C ~  and ~(l) # 0  for some complex I with P ( l ) = 0  and q(~) # 0 .  

Then a is not entire so u does not have compact support. If M - N > M1(1 + N) 

it follows from (3.5) that a e C N and that the derivatives of order < N are rapidly 

decre2sing. Hence D~u(x) = o(Ixi- ) for every 0t. Now 

V(l)t~(~) = q(~)M(P(~)/P(~))g,(l) = R(~)g(l) 

where R is a polynomi :l. It follows that P(D)u = R(D)g e C~ which proves the 

theorem. 

REMARK. Tr6ves [9] has proved that 

e(D)u = f e e ' ,  u(x) = o( ]x[-N)V N ~ u e r  ' 
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if and only if every irreducible factor of P has some real zero. By Theorem 3.3 

this is not true for any fixed N unless every factor has real zeros of codimension 

one, and in that case Corollary 3.2 shows that it suffices to take N = (n-1) /2  

as in the original Rellich theorem. Thus there is a fundamental difference between 

the case of real zeros of codimension one and real zeros of higher codimension 

in the problems considered in this section but not in those discussed in Section 2. 

We shall finally examine the necessity of the condition on F in Corollary 3.2. 

By Theorem 2.6 we know already that F must contain either grad Pj or - grad Pj 

for every zero of Pj so we include this in the hypotheses. 

TnrORE~,l 3.6. Let p be an irreducible real polynomial and F a closed 

semi-algebraic cone in R" such that gradp(~) or -gradp(~)  is in [ ' for  every 

real zero of  p. Assume that there is no real ~ with p(~) = 0 and gradp(~) ~ 0 

such that grad p(~) and - grad p(~) are both in F. Then one can for every integer 

N f i n d u ~ ' c 3 C  ~~ such that p ( D ) u = f ~ 8 '  and u(x) = o ( I x l  -N) in F but 
uCg ' .  

The statement is of course contained in Theorem 3.4 if p has no simple real 

zeros so we assume that such zeros exist. If p is a factor of P we can replace 

p by P in the conclusion by simply applying the differential operator P(D)/p(D). 

The first step in the proof is to make the hypotheses quantitative by means of 

the Tarski-Seidenberg theorem. 

LEMMA 3.7. When the hypotheses of Theorem 3.6 are fulfilled there are 

constants C, M1, M2 such that when ~ "  and p(~)= 0 

(3.6) d(F, gradp(O) + d ( F , -  gradp(~)) > c]gradp(~)] u' (1 + I~l) - u '  

where d(F, O) denotes the distance from 0 to F. 

PROOF. For fixed R > 0 we denote by fR(t) the infimum of the Ieft-hand side 

in (3.6) when ] ~ [ < R, p(~) = 0, [ grad P(O I > t. This is a positive increasing 

piecewise algebraic function of t > 0, by the hypothesis and the Tarski-Seidenberg 

theorem. Hence 
fR(t) > c(R)t ~(a) 

where c(R)> 0 and ~,(R) is a positive rational number which comes from the 

Puiseux series expansion of an algebraic function of degree independent of R. 

Hence ?(R) < M for some M. Another application of the Tarski-Seidenberg 

theorem to the infunum of 

(d(F, grad p(~)) + d(F, - grad p(~))) I grad p(~) I - u  
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when I~[ < R and p(~) = 0 will now prove (3.6). 

PROOF OF THEOREM 3.6. We choose the coordinates so that p is non- 

characteristic with respect to ~,. For the complex zeros of p we have then 

(3.7) Ir c(1 + 1r I). 
If  R(~') is the discriminant of p as a polynomial in ~, and p,' = Op/O~,, it follows 

that 

(3.8) IR(r ~ clp2(r + 1r when p(~) = 0. 

The zeros 4, = 3(~') of p are analytic in the set where R(~') # 0 and they satisfy 

estim:tes of the form 

(3.9) IDS(~')]  < C]R(~')J-u'(1 + [~'I) u '  . 

For proofs of these classical elementary facts see, e.g., [4, LemmasA.3 and A.4]. 

We shall define u by the integral 

/ .  
(3.10) u(x) = l exp(i(xd))R(~')"~(~)/p(~)d~ 

C~ n where 9 ~ Co (•) ,  ~ is not zero at every simple real zero of p and a is a large 

positive integer. The precise definition of the integrand as a distribution at the 

zeros of p will be given below. 

We shall consider separately the contributions to (3.10) for ~' in different 

components f~ of {~' e R"- 1 ; R(~') ~ 0}. In view of the implicit function theorem 

the number of real zeros 3 of p(~',3) is constant when r e f~. We denote them 

by zl(~') < "'" < 3~(~'). (Possibly there may be no zero in which case much that 

follows is triviA.) For ~' e f~ we have by the Lagrange interpolation formula 

II 

(3.11)  ~, ( { )R({ ' ) ' /p (O = s a , . d~ ' ) l (~ ,  - 3,(~')) + bn(~) 
I 

where a , . a ( { ' ) =  {,'(r It is clear that a, aeC| 
and that ba e C~~ x It~). 

We choose a C ~ function ~O on R so that ~O(t) = 0 for t > 0 and ~O(t) = - 1 

for t < - 1. Then we have 

i~(~)  - (3 + i o ) - '  ~ c oo 

where (3 + iO)- l = lim~. + 0(3 + ie)- l in .@'. Furthermore, ~ is rapidly de- 
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creasing at infinity. To improve the behavior as ~ ~ oo we modify the decomposi- 

tion (3.11) to 

(3.11)' ~(~)R(r = ~E a,.n(~')(__, i)~( _+ ( ~ -  z,(~'))) + bt~(~). 
1 

At the same time (3.11)' defines the left-hand side as a distribution of  ~ for fixed 

~' as soon as we choose the signs. Comparison with (3.11) gives if we consider 

separately the cases when r is much larger than or comparable to Ir that for 

any M, p, 

(3.12) ]O'a,.ta](1 + 1r + Io'bAl(1 + lel) _ c I g(r l" 
provided that a is larger than some number depending only on e, p. When p > 0 

this means in particular that the left-hand side vanishes on the boundary of ft. 

By hypothesis 

(3.13) _ ( - T'(~'), 1) = _ grad P(O/P'(~) e F 

for exactly one choice of the sign. Since F is closed and fl is connected it follows 

that the sign for which (3.13) is valid depends only on v and not on ~'. We choose 

this sign in (3.11)' and in the following final form of (3.10) 

(3.14) u ( x ) =  ~En / n d ~ f ( ~ t  a " a ( ~ ' ) ( - + i ) ~ ( + ( ~ - ~ ( ~ ' ) ) ) + b ~ ( ~ ) )  

exp (i(x, ~))d~. 

Y~ ~ ( + 2zri)~k( + xn)I~,n(x) + ]~ f b~a(~)exp(i(x,~))d~. 
f l  v a71 d 

Here 
l "  

lv'f~(x) = Ja  exp(i((x ' ,  ~ ' )  + xnzv(~')))a~.n(~')d~'. 

We may differentiate under the integral sign in (3.14) and this gives 

f exp (i(x, ~))~(~)R(~')'dr = (2n)nR(D')r ~ C~. p(D)u(x) 

Since a=(2n)'g_R~ when p ~ 0 and this is not an entire function we conclude 

that u does not have compact support. 

If  tr is large enough the functions b~ in the different components fl  combine 

to a function b ' e  C~(R ~) which is rapidly decreasing as well as its derivatives of  

order < N. Hence the corresponding contribution to u is in C ~~ and all its de- 

rivatives are O([x [-N) as x ~ oo. 
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It remains to estimate the terms in the first sum in (3.14). Assume that (3.13) is 

valid with the plus sign. 

term is 0 unless x, < 0. If  

Since $ ( x , ) =  0 when x, > 0 the corresponding 

r -  = { x e r ; x . < 0 }  

we have for some constants C, N',  N" 

(3.15) Ixl _< clx'  + x:,'(e')IIR(e')I-N?I+ I~'l)N",x~r-,r 
In view of the homogeneity it suffices to prove this when x, = - 1. Then we can 

apply (3.6) with ~ = (r ~,(r noting that ( - ~;(r 1) e F and that 

grad p(~) = P '(O ( - w'(~'), 1). 

It follows that 

clps + [~1)-~,2 =< Ix - (<(~ ' ) , -  1)[ = I x ' - v ; ( ~ ' ) [  

which gives (3.15)with Ix.] instead of Ix [in the left-hand side. Since 

Ix'l ~ ix' + x:;(~')l + Ix:;(~')l 
we conclude in view of (3.9) that (3.15) is valid. 

We shall now integrate by parts in I,.n using the fact that 

Lexp(i((x',  ~') + x,z,(~'))) = exp(i((x ' ,  r  + x,z,(~')) 

if L = -ilx'-Fx.'c'v[ - 2  Znt - 1  (Xjq-XnOZv/OCj)O/OX d. If a is large enough it 

follows that 

lv,n(x) = f a  exp (i((x', ~') + x:v(~'))) ('L) N+ X a~,a(~')d~ 

where tL is the adjoint of L. For sufficiently large ~ the estimates (3.9), (3.12) 

and (3.15) give 

Ix,.~ _~ c lx l -" - '  f ( 1  + ir162 x ~r- ,  

where C is independent of ~'1 and v. Hence 

u(x) = O(]x ]-N), x--. oo in F, 

which completes the proof of Theorem 3.6. 
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